
CSE 610 Special Topics:
System Security - Attack and Defense for

Binaries

Instructor: Dr. Ziming Zhao

Location: Online
Time: Monday, 5:20 PM - 8:10 PM

First off, Logistics!

Turn on camera if possible
Classes are recorded and released publicly

Have a notebook in front of you
From the second class, have the hacking environment ready

Webpage: https://zzm7000.github.io/teaching/2020fallcse610/index.html

Virtual machine: https://www.dropbox.com/s/38udm6klh4jo7nx/CSE610VM.zip?dl=0

Feel free to interrupt me and ask questions
Eat or drink if you need

https://zzm7000.github.io/teaching/2020fallcse610/index.html

Instructor

Dr. Ziming Zhao
Assistant Professor, CSE

Director, CyberspAce seCuriTy and forensIcs Lab (CactiLab)

Email: zimingzh@buffalo.edu
http://zzm7000.github.io
http://cactilab.github.io

Office: 338B Davis Hall / Online
Office hours: By appointment

Students - UB CSE 610 Graduates (3 credits)

Graduate Students (Master, PhD) who take this as CSE 610 (3-credit)

Graduate students who take 3-credit class will be invited to slack
cacti-workspace, #ubcse610private-fall2020

Students - UB Undergraduate (No credit)

Join the slack cacti-workspace, #ubcse610systemsecurity-fall2020

Treat this as an opening hacking seminar. No string attached.

Course Goals

To provide you with good understanding of the theories, principles,
techniques and tools used for software and system hacking and
hardening.

You will study, in-depth, binary reverse engineering, vulnerability classes,
vulnerability analysis, exploit/shellcode development, defensive
solutions, etc. to understand how to crack and protect native software.

You will get your hands dirty.

Quick Poll

1. Which year of undergraduate and graduate you are in?

2. Did you take any security class before?
3. Did you take the “operating system” class?
4. Do you consider yourself a *nix user?
5. Do you have any hacking experience (binary, web, etc.)?

Today’s Agenda

1. Class overview and logistics
2. Background knowledge

a. Compiler, linker, loader
b. x86 and x86-64 architectures and ISA
c. Linux file permissions
d. Set-UID programs
e. Memory map of a Linux process
f. System calls
g. Environment and Shell variables
h. Basic reverse engineering

Prerequisites

The real prerequisite:
The C Programming Language

Classes that will help you understand this class:
CSE 521 Operating Systems

Other skills:
Reverse engineering (Using objdump, IDA Pro, Ghidra, etc.)

Debugging (GDB, pwngdb)
Google, reading, self-learning, getting hands dirty

8 Topics

Binary attack and defense using x86 and x86-64 as examples.
Discover vulnerabilities. Develop exploits. Memory corruption
attacks (1 - 7).

1. Stack-based buffer overflow (2 session)
2. Defenses against stack-based buffer overflow (2)
3. Shellcode development (2)
4. Format string vulnerabilities (1)
5. Heap-based buffer overflow (1)
6. Integer overflow (1)
7. Return-oriented programming (2)
8. Cache side-channel attack, meltdown, spectre (2)

The Hacking Environment

Intel x86
x86-64, a.k.a amd64

Linux (Ubuntu)

Pwngdb
GDB peda

NSA Ghidra

The VM

User: hacker pwd: rekcah link:

Homework

Reading: whitepaper, paper, blog, etc.
Hands-on: hacking, debugging, etc.

Submit before the next class on UBLearns. We will discuss homework
at the beginning of each class.

30% penalty if you submit within 10 mins after class starts.
0 points after 10 mins.

Hacking Assignment Rules

● For each hacking assignment, you will submit your exploit, a simple
write-up, and screenshots to show it works
○ Simple write-up:

■ Briefly describe how you solve the challenge
■ Mention who you worked with if any in the write-up

● Discussion is encouraged. But, you cannot share your code, exploits,
write-ups to your classmates or post them online.

Exams

Open-book; Asynchronous?; Written midterm and final

In-class CTF

In the last class. 1.5 - 2 hours.

Grades

Academic Integrity

● Discussion is encourage. But, you cannot share your code, exploits to your
classmates or post them online.

● The university, college, and department policies against academic
dishonesty will be strictly enforced. To understand your responsibilities as a
student read: UB Student Code of Conduct.

● Plagiarism or any form of cheating in homework, assignments, labs, or
exams is subject to serious academic penalty.

● Any violation of the academic integrity policy will result in a 0 on the
homework, lab or assignment, and even an F or >F< on the final grade. And,
the violation will be reported to the Dean’s office.

Ethical Hacking

● Do not attempt to violate the law.
● If you discover real-world vulnerabilities using the knowledge you

learn from this class, report the vulnerabilities responsibly.

Attendance Check

Background Knowledge:
Compiler, linker and loader

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

Loader, e.g. Handler of execve() in Linux

1. Validation (permissions, memory requirements etc.)

2. Copying the program image from the disk into main memory

3. Copying the command-line arguments on the stack

4. Initializing registers (e.g., the stack pointer)

5. Jumping to the program entry point (_start)

Compiling a C program behind the scene (code/add)

#include "add.h"

int add(int a, int b)
{
 return a + b;
}

#ifndef ADD_H
#define ADD_H

int add(int, int);

#endif

/* This program has an integer overflow vulnerability. */
#include "add.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int a = 0;
 int b = 0;

 if (argc != 3)
 {
 printf("Usage: add a b\n");
 return 0;
 }

 a = atoi(argv[1]);
 b = atoi(argv[2]);
 printf("%d + %d = %d\n", a, b, add(a, b));
}

gcc -Wall -save-temps -m32 -O2 add.c main.c -o add

add.c add.h main.c

gcc -Wall -save-temps -O2 add.c main.c -o add64

Background Knowledge:
x86 architecture

Data Types

There are 5 integer data types:

Byte – 8 bits.
Word – 16 bits.
Dword, Doubleword – 32 bits.
Quadword – 64 bits.
Double quadword – 128 bits.

Endianness

● Little Endian (Intel, ARM)
Least significant byte has lowest address
Dword address: 0x0
Value: 0x78563412

● Big Endian
Least significant byte has highest address
Dword address: 0x0
Value: 0x12345678

0x12Address 0

0x34Address 1

0x56Address 2

0x78Address 3

Base Registers

There are
● Eight 32-bit “general-purpose” registers,
● One 32-bit EFLAGS register,
● One 32-bit instruction pointer register (eip), and
● Other special-purpose registers.

The General-Purpose Registers

● 8 general-purpose
registers

● esp is the stack pointer
● ebp is the base pointer
● esi and edi are source and

destination index registers
for array and string
operations

The General-Purpose Registers

● The registers eax, ebx, ecx,
and edx may be accessed as
32-bit, 16-bit, or 8-bit
registers.

● The other four registers can
be accessed as 32-bit or
16-bit.

EFLAGS Register

The various bits of the 32-bit EFLAGS register are set (1) or reset/clear (0)
according to the results of certain operations.

We will be interested in, at most, the bits

CF – carry flag
PF – parity flag
ZF – zero flag
SF – sign flag

Instruction Pointer (EIP)

Finally, there is the eip register, which is the instruction pointer.
Register eip holds the address of the next instruction to be executed.

Registers on x86 and amd64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

Instructions

Each instruction is of the form

label: mnemonic operand1, operand2, operand3
The label is optional.

The number of operands is 0, 1, 2, or 3, depending on the mnemonic .

Each operand is either
● An immediate value,
● A register, or
● A memory address.

Source and Destination Operands

Each operand is either a source operand or a destination operand.

A source operand, in general, may be
● An immediate value,
● A register, or
● A memory address.

A destination operand, in general, may be
● A register, or
● A memory address.

Instructions

hlt – 0 operands
halts the central processing unit (CPU) until the next external interrupt is
fired

inc – 1 operand; inc <reg>, inc <mem>

add – 2 operands; add <reg>,<reg>

imul – 1, 2, or 3 operands; imul <reg32>,<reg32>,<con>

AT&T Syntax Assembly and Disassembly

Machine instructions generally fall into three categories: data movement,
arithmetic/logic, and control-flow.

<reg32> Any 32-bit register (%eax, %ebx, %ecx, %edx, %esi, %edi, %esp, or %ebp)
<reg16> Any 16-bit register (%ax, %bx, %cx, or %dx)
<reg8> Any 8-bit register (%ah, %bh, %ch, %dh, %al, %bl, %cl, or %dl)
<reg> Any register
<mem> A memory address (e.g., (%eax), 4+var(,1), or (%eax,%ebx,1))
<con32> Any 32-bit immediate
<con16> Any 16-bit immediate
<con8> Any 8-bit immediate
<con> Any 8-, 16-, or 32-bit immediate

Addressing Memory

Move from source (operand 1) to destination (operand 2)

mov (%ebx), %eax Load 4 bytes from the memory address in EBX into EAX.

mov -4(%esi), %eax Move 4 bytes at memory address ESI + (-4) into EAX. */

mov %cl, (%esi,%eax,1) Move the contents of CL into the byte at address
ESI+EAX*1.

mov (%esi,%ebx,4), %edx Move the 4 bytes of data at address ESI+4*EBX
into EDX.

Addressing Memory

The size prefixes b, w, l, q (x86-64) indicate sizes of 1, 2, 4, and 8 (x86-64) bytes
respectively.

mov $2, (%ebx) isn’t this ambiguous? We can have a default.

movb $2, (%ebx) Move 2 into the single byte at the address stored in EBX.

movw $2, (%ebx) Move the 16-bit integer representation of 2 into the 2
bytes starting at the address in EBX.

movl $2, (%ebx) Move the 32-bit integer representation of 2 into the 4 bytes
starting at the address in EBX.

Data Movement Instructions

mov — Move

Syntax
mov <reg>, <reg>
mov <reg>, <mem>
mov <mem>, <reg>
mov <con>, <reg>
mov <con>, <mem>

Examples
mov %ebx, %eax — copy the value in EBX into EAX
movb $5, var(,1) — store the value 5 into the byte at location var

Data Movement Instructions

push — Push on stack

Syntax
push <reg32>
push <mem>
push <con32>

Examples
push %eax — push eax on the stack

Data Movement Instructions

pop — Pop from stack

Syntax
pop <reg32>
pop <mem>

Examples
pop %edi — pop the top element of the stack into EDI.
pop (%ebx) — pop the top element of the stack into memory at the four bytes
starting at location EBX.

Data Movement Instructions

lea — Load effective address; used for quick calculation

Syntax
lea <mem>, <reg32>

Examples
lea (%ebx,%esi,8), %edi — the quantity EBX+8*ESI is placed in EDI.

Arithmetic and Logic Instructions

add $10, %eax — EAX is set to EAX + 10
addb $10, (%eax) — add 10 to the single byte stored at memory address stored
in EAX

sub %ah, %al — AL is set to AL - AH
sub $216, %eax — subtract 216 from the value stored in EAX

dec %eax — subtract one from the contents of EAX

imul (%ebx), %eax — multiply the contents of EAX by the 32-bit contents of the
memory at location EBX. Store the result in EAX.

shr %cl, %ebx — Store in EBX the floor of result of dividing the value of EBX by
2n where n is the value in CL.

Control Flow Instructions

jmp — Jump

Transfers program control flow to the instruction at the memory location
indicated by the operand.

Syntax
jmp <label>

Example
jmp begin — Jump to the instruction labeled begin.

Control Flow Instructions

jcondition — Conditional jump

Syntax
je <label> (jump when equal)
jne <label> (jump when not equal)
jz <label> (jump when last result was zero)
jg <label> (jump when greater than)
jge <label> (jump when greater than or equal to)
jl <label> (jump when less than)
jle <label> (jump when less than or equal to)

Example

cmp %ebx, %eax
jle done

Control Flow Instructions

cmp — Compare

Syntax
cmp <reg>, <reg>
cmp <mem>, <reg>
cmp <reg>, <mem>
cmp <con>, <reg>

Example
cmpb $10, (%ebx)
jeq loop

If the byte stored at the memory location in EBX is equal to the integer constant 10,
jump to the location labeled loop.

Control Flow Instructions

call — Subroutine call

The call instruction first pushes the current code location onto the
hardware supported stack in memory, and then performs an
unconditional jump to the code location indicated by the label
operand. Unlike the simple jump instructions, the call instruction saves
the location to return to when the subroutine completes.

Syntax
call <label>
call <reg32>
Call <mem>

Control Flow Instructions

ret — Subroutine return

The ret instruction implements a subroutine return mechanism. This
instruction pops a code location off the hardware supported in-memory
stack to the program counter.

Syntax
ret

The Run-time Stack

The run-time stack supports procedure calls and the passing of
parameters between procedures.

The stack is located in memory.

The stack grows towards low memory.

When we push a value, esp is decremented.

When we pop a value, esp is incremented.

Stack Instructions

enter — Create a function frame

Equivalent to:

push %ebp
mov %esp, %ebp
Sub #imm, %esp

Stack Instructions

leave — Releases the function frame set up by an earlier ENTER instruction.

Equivalent to:

mov %ebp, %esp
pop %ebp

Background Knowledge:
amd64 architecture

Registers on x86 and x86-64

https://en.wikipedia.org/wiki/X86

https://en.wikipedia.org/wiki/X86

x86 vs. x86-64 (code/ladd)

/*
This program has an integer overflow vulnerability.
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

long long ladd(long long *xp, long long y)
{
 long long t = *xp + y;
 return t;
}

gcc -Wall -m32 -O2 main.c -o ladd

main.c

gcc -Wall -O2 main.c -o ladd64

int main(int argc, char *argv[])
{
 long long a = 0;
 long long b = 0;

 if (argc != 3)
 {
 printf("Usage: ladd a b\n");
 return 0;
 }

 printf("The sizeof(long long) is %d\n", sizeof(long long));

 a = atoll(argv[1]);
 b = atoll(argv[2]);

 printf("%lld + %lld = %lld\n", a, b, ladd(&a, b));
}

x86 vs. x86-64 (code/ladd)

00000640 <ladd>:
 640: 8b 44 24 04 mov 0x4(%esp),%eax
 644: 8b 50 04 mov 0x4(%eax),%edx
 647: 8b 00 mov (%eax),%eax
 649: 03 44 24 08 add 0x8(%esp),%eax
 64d: 13 54 24 0c adc 0xc(%esp),%edx
 651: c3 ret

x86-64

0000000000000780 <ladd>:
 780: 48 8b 07 mov (%rdi),%rax
 783: 48 01 f0 add %rsi,%rax
 786: c3 retq

x86

objdump -d ladd
objdump -d ladd64

Background Knowledge:
Linux File Permissions

Permission Groups

Each file and directory has three user-based permission groups:

Owner – A user is the owner of the file. By default, the person who created a file
becomes its owner. The Owner permissions apply only the owner of the file or
directory

Group – A group can contain multiple users. All users belonging to a group will
have the same access permissions to the file. The Group permissions apply only
to the group that has been assigned to the file or directory

Others – The others permissions apply to all other users on the system.

Permission Types

Each file or directory has three basic permission types defined for all the 3 user
types:

Read – The Read permission refers to a user’s capability to read the contents of
the file.

Write – The Write permissions refer to a user’s capability to write or modify a file
or directory.

Execute – The Execute permission affects a user’s capability to execute a file or
view the contents of a directory.

File type: First field in the output is file type. If the there is a – it means it
is a plain file. If there is d it means it is a directory, c represents a
character device, b represents a block device.

Permissions for owner, group, and others

Link count

Owner: This field provide info about the creator of the file.

Group

File size

Last modify time

filename

Background Knowledge:
Set-UID Programs

Pre-processing Compilation Assembly Linking Loading

From a C program to a process

Real UID, Effective UID, and Saved UID

Each Linux/Unix process has 3 UIDs associated with it.

Real UID (RUID): This is the UID of the user/process that created THIS
process. It can be changed only if the running process has EUID=0.

Effective UID (EUID): This UID is used to evaluate privileges of the process
to perform a particular action. EUID can be changed either to RUID, or SUID
if EUID!=0. If EUID=0, it can be changed to anything.

Saved UID (SUID): If the binary image file, that was launched has a Set-UID
bit on, SUID will be the UID of the owner of the file. Otherwise, SUID will be
the RUID.

Set-UID Program

The kernel makes the decision whether a process has the privilege by
looking on the EUID of the process.

For non Set-UID programs, the effective uid and the real uid are the
same. For Set-UID programs, the effective uid is the owner of the
program, while the real uid is the user of the program.

What will happen is when a setuid binary executes, the process changes
its Effective User ID (EUID) from the default RUID to the owner of this
special binary executable file which in this case is - root.

Example: code/rdsecret

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <pwd.h>

int main(int argc, char *argv[])
{
 FILE *fp = NULL;
 char buffer[100] = {0};

 // get ruid and euid
 uid_t uid = getuid();
 struct passwd *pw = getpwuid(uid);
 if (pw)
 {

printf("UID: %d, USER: %s.\n", uid, pw->pw_name);
 }

 uid_t euid = geteuid();
 pw = getpwuid(euid);

main.c

 if (pw)
 {

printf("EUID: %d, EUSER: %s.\n", euid, pw->pw_name);
 }

 // open the file
 fp = fopen("secret.txt", "r");
 if (fp == NULL)
 {

printf("Can't read the secret!\n");
return(1);

 }

 fread(buffer, 99, 1, fp);
 printf("%s\n", buffer);
 fclose(fp);

 return(0);
}

https://mp.weixin.qq.com/s/GRY5tbRa3Oa-mD8PA4P2Xg

Demo

Background Knowledge:
ELF Binary Files

ELF Files

The Executable and Linkable Format (ELF) is a common standard file
format for executable files, object code, shared libraries, and core
dumps. Filename extension none, .axf, .bin, .elf, .o, .prx, .puff, .ko, .mod
and .so

Contains the program and its data. Describes how the program should
be loaded (program/segment headers). Contains metadata describing
program components (section headers).

Command file

file /bin/ls

INTERP: defines the library that should be
used to load this ELF into memory.
LOAD: defines a part of the file that should be
loaded into memory.

Sections:
.text: the executable code of your program.
.plt and .got: used to resolve and dispatch
library calls.
.data: used for pre-initialized global writable
data (such as global arrays with initial values)
.rodata: used for global read-only data (such
as string constants)
.bss: used for uninitialized global writable
data (such as global arrays without initial
values)

Tools for ELF

gcc to make your ELF.
readelf to parse the ELF header.
objdump to parse the ELF header and disassemble the source code.
nm to view your ELF's symbols.
patchelf to change some ELF properties.
objcopy to swap out ELF sections.
strip to remove otherwise-helpful information (such as symbols).
kaitai struct (https://ide.kaitai.io/) to look through your ELF interactively.

https://ide.kaitai.io/

Background Knowledge:
Memory Map of a Linux Process

Memory Map of Linux Process (32 bit)

Each process in a multi-tasking OS runs in its own memory sandbox.

This sandbox is the virtual address space, which in 32-bit mode is
always a 4GB block of memory addresses.

These virtual addresses are mapped to physical memory by page tables,
which are maintained by the operating system kernel and consulted by
the processor.

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

NULL Pointer in C/C++

int * pInt = NULL;

In possible definitions of NULL in C/C++:

#define NULL ((char *)0)
#define NULL 0

//since C++11
#define NULL nullptr

/proc/pid_of_process/maps

Example processmap.c

#include <stdio.h>
#include <stdlib.h>

int main()
{

getchar();
return 0;

}

cat /proc/pid/maps
pmap -X pid
pmap -X `pidof pm`

Memory Map of Linux Process (64 bit system)

Background Knowledge:
System Calls

What is System Call?

When a process needs to invoke a kernel service, it invokes a procedure
call in the operating system interface. Such a procedure is called a
system call.

The system call enters the kernel; the kernel performs the service and
returns. Thus a process alternates between executing in user space and
kernel space.

System calls are generally not invoked directly, but rather via wrapper
functions in glibc (or perhaps some other library).

Popular System Call

On Unix, Unix-like and other POSIX-compliant operating systems,
popular system calls are open, read, write, close, wait, exec, fork, exit,
and kill.

Many modern operating systems have hundreds of system calls. For
example, Linux and OpenBSD each have over 300 different calls, FreeBSD
has over 500, Windows 7 has close to 700.

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Open_(system_call)
https://en.wikipedia.org/wiki/Read_(system_call)
https://en.wikipedia.org/wiki/Write_(system_call)
https://en.wikipedia.org/wiki/Close_(system_call)
https://en.wikipedia.org/wiki/Wait_(system_call)
https://en.wikipedia.org/wiki/Exec_(system_call)
https://en.wikipedia.org/wiki/Fork_(system_call)
https://en.wikipedia.org/wiki/Exit_(system_call)
https://en.wikipedia.org/wiki/Kill_(system_call)
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/FreeBSD

Glibc interfaces

Often, but not always, the name of the wrapper function is the same as
the name of the system call that it invokes.

For example, glibc contains a function chdir() which invokes the
underlying "chdir" system call.

Tools: strace & ltrace

Making a System Call in x86 Assembly

On x86/x86-64, most system calls rely on the software interrupt (the int
0x80 instruction).

A software interrupt is caused either by an exceptional condition in the
processor itself, or a special instruction.

For example: a divide-by-zero exception will be thrown if the processor's
arithmetic logic unit is commanded to divide a number by zero as this
instruction is in error and impossible.

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

Making a System Call in x86 Assembly

https://www.informatik.htw-dresden.de/~beck/ASM/syscall_list.html

http://shell-storm.org/shellcode/files/shellcode-827.php

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

Making a System Call in x86 Assembly

http://shell-storm.org/shellcode/files/shellcode-827.php

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

Making a System Call in x86 Assembly

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

%eax

Making a System Call in x86 Assembly

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

%eax

$0x68732f2f
$0x6e69622f

Making a System Call in x86 Assembly

xor %eax,%eax
push %eax
push $0x68732f2f
push $0x6e69622f
mov %esp,%ebx
push %eax
push %ebx
mov %esp,%ecx
mov $0xb,%al
int $0x80

stack

High address

Low address

%esp

%eax

$0x68732f2f
$0x6e69622f

Making a System Call in x86 Assembly

Making a System Call in x86 Assembly

execve(“/bin/sh”, address of string “/bin/sh”, 0)

Background Knowledge:
Environment and Shell Variables

Environment and Shell Variables

Environment and Shell variables are a set of dynamic named values,
stored within the system that are used by applications launched in shells.

KEY=value
KEY="Some other value"
KEY=value1:value2

The names of the variables are case-sensitive (UPPER CASE).
Multiple values must be separated by the colon : character.
There is no space around the equals = symbol.

Environment variables are variables that are available system-wide and
are inherited by all spawned child processes and shells.

Shell variables are variables that apply only to the current shell instance.
Each shell such as zsh and bash, has its own set of internal shell
variables.

Environment and Shell Variables

Common Environment Variables

USER - The current logged in user.
HOME - The home directory of the current user.
EDITOR - The default file editor to be used. This is the editor that will be
used when you type edit in your terminal.
SHELL - The path of the current user’s shell, such as bash or zsh.
LOGNAME - The name of the current user.
PATH - A list of directories to be searched when executing commands.
LANG - The current locales settings.
TERM - The current terminal emulation.
MAIL - Location of where the current user’s mail is stored.

Commands

env – The command allows you to run another program in a custom
environment without modifying the current one. When used without an
argument it will print a list of the current environment variables.
printenv – The command prints all or the specified environment
variables.
set – The command sets or unsets shell variables. When used without an
argument it will print a list of all variables including environment and
shell variables, and shell functions.
unset – The command deletes shell and environment variables.
export – The command sets environment variables

The environment variables
live towards the top of the
stack, together with
command line arguments.

Background Knowledge:
Reverse Engineering Tools

Tools for Week-1

file
readelf
strings
nm
objdump
IDA Pro
ghidra

GDB Cheat Sheet

Start gdb using:
gdb <binary>
Pass initial commands for gdb through a file
gdb <binary> –x <initfile>

To start running the program
r <argv>
Use python output as stdin in GDB:
r <<< $(python -c "print '\x12\x34'*5")

Set breakpoint at address:
b *0x80000000
b main
Disassemble 10 instructions from an address:
x/10i 0x80000000

GDB Cheat Sheet

To put breakpoints (stop execution on a certain line)
b <function name>
b *<instruction address>
b <filename:line number>
b <line number>

To show breakpoints
info b

To remove breakpoints
clear <function name>
clear *<instruction address>
clear <filename:line number>
clear <line number>

GDB Cheat Sheet

Use “examine” or “x” command
x/32xw <memory location> to see memory contents at memory location, showing 32 hexadecimal words
x/5s <memory location> to show 5 strings (null terminated) at a particular memory location
x/10i <memory location> to show 10 instructions at particular memory location

See registers
info reg

Step an instruction
si

Shell Cheat Sheet

Run a program and use another program’s output as a parameter
program $(python -c "print '\x12\x34'*5")

In-class Exercises

1. Homework-1

Dues

1. Homework-1

